TEAM 43

#### ACE Design Project







# ARUP



IONY

#### 1. Challenge

#### 2. Solution

#### 3. Final Remarks



#### 1. Challenge

#### 2. Solution

#### 3. Final Remarks



#### **Request For Proposal**

"NYC is welcoming proposals for the expansion of the city's transportation system."

- Provide a new line or line extension with a new station
- Deliver a meaningful and executable design

Downtown & Brooklyn

- Should **consider the impact** on the community and environment



#### **About the Subway**

NΥ

5.7 Million commuters use the subway on an average weekday, and 1.757 Billion commuters use it per year.

There are over 665 miles of mainline track, about 60% of which is underground.

There are **472 total stations**, most of which were built before 1940.

Downtown & Brooklyn

----

..........

..........

https://www.6sqft.com/the-new-york-city-subway-in-fascinating-facts-and-figures/

IONA

#### 1. Challenge

#### 2. Solution

3. Final Remarks



#### **Overview**



**Deliverables of this workstream** 

![](_page_8_Picture_2.jpeg)

IONY

**Procurement and Design Method** 

![](_page_9_Figure_2.jpeg)

![](_page_10_Figure_0.jpeg)

#### Site Selection

NY

| Student Name:                                                                                                                       |    | $\begin{array}{c} \underline{\textbf{Example:}} \\ \textbf{B}_{B1} = \textbf{A}_1 \textbf{x} \textbf{B}_{A1} \\ .7 = .10 \textbf{x} \textbf{7} \end{array} \begin{array}{c} \textbf{C} = \textbf{B}_{B1} + \textbf{B}_{B2} + \textbf{B}_{B3} + \textbf{B}_{B4} + \textbf{B}_{B5} \\ 6.5 = .7 + .6 + 2.4 + 2.4 + .4 \end{array}$ | B <sub>A</sub> must | be a # 1-10    |
|-------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| <b>Project Criteria</b><br>(From RFP and From Team's Input)                                                                         | %  | Team:                                                                                                                                                                                                                                                                                                                           |                     |                |
|                                                                                                                                     | Α  |                                                                                                                                                                                                                                                                                                                                 | B <sub>A</sub>      | B <sub>B</sub> |
| 1.         Achieve project objective – People and Planning Benefits         2.         Complexity – Technical Design & Construction | 30 | Meets RFP requirements                                                                                                                                                                                                                                                                                                          |                     |                |
|                                                                                                                                     | 20 | Can be designed and built with moderate difficulty                                                                                                                                                                                                                                                                              |                     |                |
| 3.<br>Site selection – Environmental Impacts                                                                                        | 20 | Negative impact = low #<br>Positive impact = high #                                                                                                                                                                                                                                                                             |                     |                |
| 4.<br>Site selection – Social Impacts                                                                                               | 15 | Negative impact = low #<br>Positive impact = high #                                                                                                                                                                                                                                                                             |                     |                |
| 5.<br>Regional Economic Impact                                                                                                      | 15 | Potential to economic growth beyond what was<br>already there<br>(higher number expected in less developed area)                                                                                                                                                                                                                |                     |                |
| Total Weighted Score (C):                                                                                                           |    |                                                                                                                                                                                                                                                                                                                                 |                     |                |

IONY

**Tunnel Estimated Construction Cost & Time Tunnel Option** 100 Construction Construction Schedule Cost Estimate Estimate Downtown & Station **TBM Machine** Construction Est.\$/mile: \$1.3B Schedule: 299 Schedule: 3 Yrs days Max. **Total Construction Est.:** Est. cost for 1 **3-4** Yrs (w/ overlap of construction) new station and 1 rehabilitated NY station: \$173M

IONY

Est. Total cost for project: \$4.42B

![](_page_13_Picture_1.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_15_Picture_1.jpeg)

Friday, December 30 12 24 p.m. Downtown & A Brooklyn

![](_page_15_Picture_4.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_17_Picture_1.jpeg)

IONY

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_1.jpeg)

- Calculated the dead and live loads
- The choice of material that will perform the best in a given project
  Precautions against natural disasters

IONY

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

NY

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

Tunnel Boring

🔤 🗕 🖲 🔿 📾 🕫 🗑 🖲 🗑 🖷 😁 😇

.........

Cut and Cover

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

|    |    |   |   | 8651 - 1 |
|----|----|---|---|----------|
| NY |    |   | 0 | SU EW    |
|    | AV | D |   |          |

| Newsstand                                                                                                                                                                                                                                      |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Pros                                                                                                                                                                                                                                           | Cons                                                                 |
| <ul> <li>→ Its faster</li> <li>→ Doesn't interfere with traffic as much</li> <li>→ Businesses are not affected as badly</li> <li>→ Wouldn't interfere with existing pipes<br/>and utilities</li> <li>→ Not as loud as cut and over.</li> </ul> | → It will get costly; compared to deep cut to cover it would be less |

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_0.jpeg)

NΥ

As a structural engineer we had the task of determining the excavation techniques as well as the appropriate structural components to use in the project. At the end, we chose boring as the best method to excavate the subway. In addition, we calculated the loading and calculated columns sizes based on architectural layouts.

IONA

#### Mechanical

#### Deliverables

- Mechanical equipment for ventilation
- Tunnel ventilation system
- Platform and station ventilation systems

![](_page_27_Figure_5.jpeg)

#### Mechanical – Our Problem The Piston Effect

![](_page_28_Figure_1.jpeg)

Mechanical – Our Problem The Piston Effect Cont.

#### **INTAKE STROKE**

![](_page_29_Figure_2.jpeg)

2

![](_page_29_Figure_3.jpeg)

When leaving a station, the train creates a sucking effect. In addition, the train also creates a pushing effect.

https://qph.fs.quoracdn.net/main-qimg-55aa80c2abcaf623d9fb385fa4a9c5a3.webp

#### **Mechanical – Calculations**

NY

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

#### Mechanical – Solution Add Subway Grates

N

• These are commonly used to reduce the Piston Effect, however they must be sized accordingly so that they are efficient and don't cut too much into funds.

### • These would be placed on both ends of the station, diminishing the vacuum/sucking effect as well as the pushing force.

![](_page_31_Picture_3.jpeg)

#### **Mechanical – Problem**

Heating and Cooling of the Platform and Station

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_32_Picture_5.jpeg)

- https://www.nytimes.com/2019/01/31/nyregion/cold-weather-polar-vortex-nyc.html
   https://patch.com/new-york/new-york-city/heres-how-hot-your-subway-platform-summer-turns-stations-sweaty-hell
   https://www.vice.com/en\_ca/article/ev8jye/no-the-subway-doesnt-have-to-be-insanely-hot-and-gross

#### **Mechanical – Our Solution**

Design a ventilation system for heating and cooling the station

![](_page_33_Figure_2.jpeg)

#### 1. Challenge

#### 2. Solution

#### 3. Final Remarks

![](_page_34_Picture_3.jpeg)

Acknowledgments

# ACCHITECTURE - CONSTRUCTION - ENGINEERING

## ARUP

• • • • • • • • • • • • • • • •

![](_page_35_Picture_4.jpeg)

IONY

![](_page_36_Picture_0.jpeg)